
C++ Files and Streams

So far, we have been using the iostream standard library, which

provides cin and cout methods for reading from standard input and writing to

standard output respectively.

This tutorial will teach you how to read and write from a file. This requires another

standard C++ library called fstream, which defines three new data types −

Sr.No Data Type & Description

1
ofstream
This data type represents the output file stream and is used to create files and to

write information to files.

2

ifstream

This data type represents the input file stream and is used to read information

from files.

3

fstream
This data type represents the file stream generally, and has the capabilities of

both ofstream and ifstream which means it can create files, write information to

files, and read information from files.

To perform file processing in C++, header files <iostream> and <fstream> must be

included in your C++ source file.

Opening a File

A file must be opened before you can read from it or write to it.

Either ofstream or fstream object may be used to open a file for writing. And

ifstream object is used to open a file for reading purpose only.

Following is the standard syntax for open() function, which is a member of

fstream, ifstream, and ofstream objects.

void open(const char *filename, ios::openmode mode);

Here, the first argument specifies the name and location of the file to be opened

and the second argument of the open() member function defines the mode in which

the file should be opened.

Sr.No Mode Flag & Description

1
ios::app
Append mode. All output to that file to be appended to the end.

2
ios::ate
Open a file for output and move the read/write control to the end of the file.

3
ios::in
Open a file for reading.

4
ios::out
Open a file for writing.

5
ios::trunc
If the file already exists, its contents will be truncated before opening the file.

You can combine two or more of these values by ORing them together. For

example if you want to open a file in write mode and want to truncate it in case

that already exists, following will be the syntax −

ofstream outfile;

outfile.open("file.dat", ios::out | ios::trunc);

Similar way, you can open a file for reading and writing purpose as follows −

fstream afile;

afile.open("file.dat", ios::out | ios::in);

Closing a File

When a C++ program terminates it automatically flushes all the streams, release all

the allocated memory and close all the opened files. But it is always a good

practice that a programmer should close all the opened files before program

termination.

Following is the standard syntax for close() function, which is a member of

fstream, ifstream, and ofstream objects.

void close();

Writing to a File

While doing C++ programming, you write information to a file from your program

using the stream insertion operator (<<) just as you use that operator to output

information to the screen. The only difference is that you use

an ofstream or fstream object instead of the cout object.

Reading from a File

You read information from a file into your program using the stream extraction

operator (>>) just as you use that operator to input information from the keyboard.

The only difference is that you use an ifstream or fstream object instead of

the cin object.

Read and Write Example

Following is the C++ program which opens a file in reading and writing mode.

After writing information entered by the user to a file named afile.dat, the program

reads information from the file and outputs it onto the screen −

Live Demo

#include <fstream>

#include <iostream>

using namespace std;

int main () {

 char data[100];

 // open a file in write mode.

 ofstream outfile;

 outfile.open("afile.dat");

 cout << "Writing to the file" << endl;

 cout << "Enter your name: ";

 cin.getline(data, 100);

 // write inputted data into the file.

 outfile << data << endl;

 cout << "Enter your age: ";

 cin >> data;

 cin.ignore();

 // again write inputted data into the file.

 outfile << data << endl;

http://tpcg.io/MLhc7C

 // close the opened file.

 outfile.close();

 // open a file in read mode.

 ifstream infile;

 infile.open("afile.dat");

 cout << "Reading from the file" << endl;

 infile >> data;

 // write the data at the screen.

 cout << data << endl;

 // again read the data from the file and display it.

 infile >> data;

 cout << data << endl;

 // close the opened file.

 infile.close();

 return 0;

}

When the above code is compiled and executed, it produces the following sample

input and output −

$./a.out

Writing to the file

Enter your name: Zara

Enter your age: 9

Reading from the file

Zara

9

Above examples make use of additional functions from cin object, like getline()

function to read the line from outside and ignore() function to ignore the extra

characters left by previous read statement.

File Position Pointers

Both istream and ostream provide member functions for repositioning the file-

position pointer. These member functions are seekg ("seek get") for istream

and seekp ("seek put") for ostream.

The argument to seekg and seekp normally is a long integer. A second argument

can be specified to indicate the seek direction. The seek direction can

be ios::beg (the default) for positioning relative to the beginning of a

stream, ios::cur for positioning relative to the current position in a stream

or ios::end for positioning relative to the end of a stream.

The file-position pointer is an integer value that specifies the location in the file as

a number of bytes from the file's starting location. Some examples of positioning

the "get" file-position pointer are −

// position to the nth byte of fileObject (assumes ios::beg)

fileObject.seekg(n);

// position n bytes forward in fileObject

fileObject.seekg(n, ios::cur);

// position n bytes back from end of fileObject

fileObject.seekg(n, ios::end);

// position at end of fileObject

fileObject.seekg(0, ios::end);
Kickstart Your Career

Get certified by completing the course

Get Started

Print Page

PreviousNext

https://www.tutorialspoint.com/latest/certifications
https://www.tutorialspoint.com/cplusplus/cpp_interfaces.htm
https://www.tutorialspoint.com/cplusplus/cpp_interfaces.htm

	C++ Files and Streams
	Opening a File
	Closing a File
	Writing to a File
	Reading from a File
	Read and Write Example
	File Position Pointers
	Kickstart Your Career

